Detection and Characterization of Stance on Social Media

Part 3
Detection and Characterization of Stance on Social Media

Abeer Aldayel, School of Informatics, University of Edinburgh
Kareem Darwish, Qatar Computing Research Institute, HBKU
Walid Magdy, School of Informatics, University of Edinburgh
Part 3

Stance Detection Applications

&

What is next?

@Walid_Magdy
What after detecting users’ stance?

- Stance detection applications
 - Analysing discussions in major events
 - Understanding user characteristics/leanings
 - Measuring opinion change
 - Detecting fake news

- Recent trends in stance detection

- Current challenges & possible future directions
Who am I?

• Associate Professor,
The School of Informatics, University of Edinburgh

• Faculty Fellow,
The Alan Turing Institute, London

• Director & Founder
The Social Media Analysis and Support for Humanity (SMASH) group at Edinburgh University (@SMASH_Edin)

• Interests:
Computational Social Science, Data Mining, and NLP
Part 1

Stance Detection as a Tool
Example 1

What societies are really interested in?
US Election 2016

- Collected tweets on **US Election**
- Study period: 1 Sep 2016 – 8 Nov 2016 (election day)
- Total tweet volume: **66M** tweets/retweets
- Study:
 - Most **50** viral daily tweets
 - **3450** tweets → **26.6M** retweets (40% of full volume)
- Label: support/attack **Trump/Clinton** or neither
- Analyzed:
 - top discussed topics, influencers, link sources, state-mentions, … etc.
Support/Attack Volume

15% 85%
Most Discussed Topics

(a) Support Clinton

(b) Attack Trump

(c) Support Trump

(d) Attack Clinton
Mention of States

Mentions of States for each Class

- Support Clinton
- Attack Clinton
- Support Trump
- Attack Trump
Most Influential Accounts

<table>
<thead>
<tr>
<th>Account</th>
<th>support Clinton</th>
<th>attack Trump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Volume</td>
</tr>
<tr>
<td>Hillary Clinton</td>
<td>331</td>
<td>2,025,821</td>
</tr>
<tr>
<td>President Obama</td>
<td>4</td>
<td>122,947</td>
</tr>
<tr>
<td>Senator Tim Kaine</td>
<td>15</td>
<td>84,245</td>
</tr>
<tr>
<td>Jerry Springer</td>
<td>1</td>
<td>78,872</td>
</tr>
<tr>
<td>Erin Ruberry</td>
<td>1</td>
<td>72,167</td>
</tr>
<tr>
<td>Richard Hine</td>
<td>1</td>
<td>66,817</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>7</td>
<td>46,180</td>
</tr>
<tr>
<td>CNN</td>
<td>6</td>
<td>41,983</td>
</tr>
<tr>
<td>Funny Or Die</td>
<td>1</td>
<td>27,909</td>
</tr>
<tr>
<td>Channel 4 News</td>
<td>1</td>
<td>27,409</td>
</tr>
</tbody>
</table>

Support Trump	446	4,992,845	Donald J. Trump	246	3,613,025
			Kellyanne Conway	141	1,454,903
			Mike Pence	92	349,025
			Dan Scavino Jr.	78	297,273
			Official Team Trump	23	150,932
			Donald Trump Jr.	34	126,744
			Eric Trump	19	85,742
			Immigrants4Trump	7	84,063
			Cloyd Rivers	4	83,903
			Juanita Broaddrick	4	83,903
			James Woods	16	78,719
Most Viral Tweets

Hillary Clinton belongs in the White House. Donald Trump belongs on my show.
5:55 AM - 27 Sep 2016
163,344 Retweets 321,220 Likes

No link between Trump & Russia
No link between Assange & Russia
But Podesta & Clinton involved in selling 20% of US uranium to Russia
4:48 AM - 1 Nov 2016
55,797 Retweets 45,002 Likes

Donald Trump said pregnancy is very inconvenient for businesses, like his mother's pregnancy hasn't been inconvenient for the whole world.
3:52 PM - 15 Sep 2016
149,610 Retweets 183,906 Likes

TODAY WE MAKE AMERICA GREAT AGAIN!
2:43 PM - 8 Nov 2016
336,137 Retweets 563,878 Likes
Findings

- Trump had much larger support on Twitter than Clinton
- Clinton (and her supporters) focus was on Attacking Trump
 - Clinton official website was #1 referenced in attacking Trump
 - Trump official website was #8 referenced in attacking Clinton
- WikiLeaks had strong role in creating content against Clinton
- Trump supporters were significantly more active than Clinton’s
- Trump’s slogan was well spread, unlike Clinton’s

Example 2

Understanding Antecedent of Support
Where ISIS supporters come from?

- Signals of ISIS support is frequently noticed on Twitter in 2014
- Collected 3 million tweets mentioning ISIS
- Labeling:

![Bar chart showing the distribution of users discussing ISIS. 93.1% are pro-ISIS, 77.3% are anti-ISIS, and 1.2% are neutral.]

- 57K (11K + 46K) users talking about ISIS (10 tweets at least)
Modeling Users

- **Data Collection:**
 - Collect tweets timeline for 57K users \rightarrow 123 million tweets
 - Identify tweets of users before even mention ISIS

- **Stance Classifier:**
 - Train classifier with Pre-ISIS tweets \rightarrow Pro/Anti ISIS
 - Accuracy \rightarrow 87%

- **Analysis:**
 - Find most distinguishing feats for Pro-ISIS
 (before being supporters to ISIS)
Findings

- Most distinguishing features:
 - Related to Arab spring (Egypt, Syria, Libya)
 - Related to protesting against Arab regimes (SA, Kuwait, Iraq)

- Qualitative

<table>
<thead>
<tr>
<th>Date</th>
<th>Tweet (translated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 25, 2012</td>
<td>Don't be surprised if it rains today ... martyrs are spitting on us</td>
</tr>
<tr>
<td>Nov. 9, 2014</td>
<td>Preliminary schizophrenia: I like ISIS, but I want to watch Chris Nolan's new movie</td>
</tr>
<tr>
<td>Nov. 17, 2014</td>
<td>Check the gazes of Bashar's soldiers before slaughter by #Islamic_State in #despite_the_disbelievers</td>
</tr>
</tbody>
</table>

- Support of ISIS is not ideological, but for revenge

Example 3

Factors Influencing our Leanings
Stance towards Muslims after #ParisAttacks

● Paris Attacks
 → Worldwide support (#Pray4Paris)
 → ISIS announce responsibility
 → Campaign against Muslims (#MuslimsAreTerrorists)
 → Campaign defending Muslims (#ISISisNotIslam)

● Collected: 8.4 million tweets about #ParisAttacks in 50hrs

● 900K tweets mentioning something about Islam

● Sampling + label propagation → 336K tweets
 Attacking Muslims / Defending Muslims / Neutral
Top Hashtags about Muslims

<table>
<thead>
<tr>
<th>Positive</th>
<th>Count</th>
<th>Negative</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>#MuslimsAreNotTerrorist</td>
<td>34,925</td>
<td>#IslamIsTheProblem</td>
<td>3,154</td>
</tr>
<tr>
<td>#MuslimAreNotTerrorist</td>
<td>17,759</td>
<td>#RadicalIslam</td>
<td>1,618</td>
</tr>
<tr>
<td>#NotInMyName</td>
<td>4,728</td>
<td>#StopIslam</td>
<td>1,598</td>
</tr>
<tr>
<td>#MuslimsStandWithParis</td>
<td>1,228</td>
<td>#BanIslam</td>
<td>460</td>
</tr>
<tr>
<td>#MuslimsAreNotTerrorists</td>
<td>1,106</td>
<td>#StopIslamicImmigration</td>
<td>333</td>
</tr>
<tr>
<td>#ThisisNotIslam</td>
<td>781</td>
<td>#IslamIsEvil</td>
<td>290</td>
</tr>
<tr>
<td>#NothingToDoWithIslam</td>
<td>619</td>
<td>#IslamAttacksParis</td>
<td>280</td>
</tr>
<tr>
<td>#ISISareNotMuslim</td>
<td>316</td>
<td>#ImpeachTheMuslim</td>
<td>215</td>
</tr>
<tr>
<td>#ExtremistsAreNotMuslim</td>
<td>306</td>
<td>#KillAllMuslims</td>
<td>206</td>
</tr>
<tr>
<td>#ISISisNotIslam</td>
<td>243</td>
<td>#DeportAllMuslims</td>
<td>186</td>
</tr>
</tbody>
</table>
Can we predict stance before it happens?

- Identified **44K US-based** polarized users towards **Muslims**
 - Mentioned Islam before (10.5K → 6.6K + 4K)
 - Never mentioned Islam (33.5K → 27.5K + 6K)

- Collected latest **400** tweets/user before attacks
 - **12.6M** tweets + Network interactions + Profile info

- Tested several features for predicting user stance towards Muslims:
 - User’s **tweets content, network interactions, and profile**

- Prediction Accuracy: **88%**
 - Using **network interaction** features only
Feature Analysis

Defending Muslims

Attacking Muslims
Findings

- People's unspoken views are predictable
- Unrelated events/hobbies can tell us a lot
- Humans tend to group into homophily, even on social media

Ref:
Example 4

People Changing Opinion?
The Egyptian Military Intervention 2013

- 30 June 2013: large demonstration in Egypt against Morsi
- 3 July 2013: Military ousted Morsi
- 5 July-13 Aug: Large Sit-in against military coup
- 14 Aug: Army ends Sit-in by force, while hundreds killed

RQ: Did these major events led anyone to change his/her opinion about the military intervention?
Study

- **Data Collection:**
 - 6M tweets on Egypt → 21 July 2013 – 30 Sep 2013
 - 22K Twitter users with >5 tweets on topic

- **Tweet-level Stance Classifier:**
 - Trained stance classifier → Pro/Anti military intervention
 - Accuracy: 85% (on the tweet level)
 - Label all tweets on topic using the classifier

- **Analysis:**
 - Global/User-level analysis
 - Observe change in support pattern over time (at least 5, 10, 20 tweets)
Opinion Change over 3+ Months

- **Anti-MI → Pro-MI**
- **Pro-MI → Anti-MI**
- **Users Pool**

Percentage of users switched vs. Min number of tweets by a user to be considered in the analysis.
Findings

- Observed global change in trends does not mean change on the individual levels
- Groups feeling unjust tend to be more vocal
- It is really not easy to get someone change opinion

Ref:
Example 5

Detecting Fake News
Claim-based Stance detection

Breaking911
@Breaking911

BREAKING: @TMZ reporting Kim Jong Un is dead or “on his death bed with no hope for recuperation”

7:16 pm · 25 Apr 2020 · Twitter for iPhone

→ **User1:** Great, the world is now one dictator less. Hope other dictators will follow

→ **User2:** Apparently a hoax. Best to take Tweet down
Claim-based Stance detection

- A full line of research uses stance detection to label replies/comments on news to be either supporting/denying it.
- Proven to be an effective feature for measuring the truthfulness of a piece of news
- Several shared tasks: RumourEval 2017/2019

Ref:
Part 2
Recent Trends
Person 1: How do you like my new profile pic?

Person 2: Oh man, you look too republican here 😊

● Question:
Is it possible to predict ideology of politicians solely from their images and the photos they share online?

● Task:
Classify 319 US congress members to democrat/republican from their images only.
Study

- **Data Collection:**
 - 296,461 images for 319 Members of Congress from their FB.
 - For each member, test classification using one photo vs 150 photos

- **Ideology Classifier:**
 - CNN
 - Use 10-fold cross-validation for training and testing

- **Results:**
 - 1 photo/member classification \rightarrow 59%
 - 150 photo/member classification \rightarrow 82%
Findings

- Not just our words and network expose our leanings, but also the photos we share as well.
- Is it homophily again? Or life-style?

Ref:
Nan Xi, Di Ma, Marcus Liou, Zachary Steinert-Threlkeld, Lefteris Anastasopoulos, Jungseock Joo. Understanding the Political Ideology of Legislators from Social Media Images. ICWSM 2020
Stance detection beyond politics

- Costanza Conforti, Jakob Berndt, Mohammad Taher Pilehvar, Chryssi Giannitsarou, Flavio Toxvaerd and Nigel Collier.
 Will-They-Won’t-They: A Very Large Dataset for Stance Detection on Twitter. *ACL 2020*

- **WT-WT stance dataset:**
 - 51,284 tweets
 - Financial domain
 - 5 topics on M&A of companies in two domains: entertainment and healthcare.
 - Labels: support/refute/comment/unrelated
Train on Topic X and classify topic Y

Train on Topics T1, T2, T3 … Tn, and classify any topic Tx

Most studies experimented SemEval dataset

Results are still much lower compared to supervised

Ref:
- Bowen Zhang, Min Yang, Xutao Li, Yunming Ye, Xiaofei Xu, Kuai Dai. Enhancing Cross-target Stance Detection with Transferable Semantic-Emotion Knowledge. ACL 2020
Characterizing News Media Leaning

- Premise: Users cite news media that align with their stance
- Procedure:
 - Automatically split users based on stance on different topics
 - Compute correlation between media and users with different stances (valence)
 - Assign a score to media based correlation across topics:
 - (far-left, left, neutral, right, far-right)
- Ref:
Characterizing News Media Leaning

<table>
<thead>
<tr>
<th>Media</th>
<th>Factuality</th>
<th>Bias</th>
<th>Average</th>
<th>Climate Change</th>
<th>Gun Control</th>
<th>Abortion</th>
<th>Immigration</th>
<th>Midterm</th>
<th>Police & Racism</th>
<th>SCOTUS</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>thehill.com</td>
<td>H</td>
<td>L-C</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>theguardian.com</td>
<td>H</td>
<td>L-C</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+=</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>washingtonpost.com</td>
<td>H</td>
<td>L-C</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++++</td>
</tr>
<tr>
<td>breitbart.com</td>
<td>V-L</td>
<td>Far R</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>foxnews.com</td>
<td>M</td>
<td>R</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>nytimes.com</td>
<td>H</td>
<td>L-C</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>cnn.com</td>
<td>M</td>
<td>L</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>apple.news</td>
<td>M</td>
<td>L</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>dailycaller.com</td>
<td>M</td>
<td>R</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>rawstory.com</td>
<td>M</td>
<td>L</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>huffingtonpost.com</td>
<td>H</td>
<td>L</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>truenytimes.com</td>
<td>L</td>
<td>--</td>
</tr>
<tr>
<td>nbcnews.com</td>
<td>H</td>
<td>L-C</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>westernjournal.com</td>
<td>M</td>
<td>R</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Part 3
Challenges & Future Directions
Technical Challenges

- Spams/Bots
 - How our data samples are free of spams?
 - Are the accounts we classify for real people or bots?

- Two or Three stance classes?
 - Is using Support/Oppose the optimal choice?
 - Is there anything called “neutral” stance for a user?
Ethical Challenges

- Are stance detection models racist?
 - Create stereotypes for users with specific leanings
 - Even with homophily, outliers are misclassified
 - Isn’t this true for all demographic classifiers? (gender, race … etc)

- Data Bias
 - Does our sample data represent all users of a given stance?
 - Can we sample users with limited activity online (silent users)?

- Correlation vs Causality

Ethical Challenges

- User’s privacy
 - With stance model, we can classify users’ leaning even if never discussed the topic. Is this a violation to user’s privacy?
 - What about sensitive topics? Is it ethical to create such tools? “Is user X with or against their government?”
 - Can we help users to protect their privacy from these models?
What should be next?

- A better stance detection model? Possibly!
 - especially semi/un-supervised ones
 - new features (e.g. photos)
- New datasets covering other domains
 e.g. sports, science, finance
- New methods to counter stance detection models
 protect user’s privacy
- New ethical procedure for data usage
- New applications
 using stance detection to measure bots impact on user’s opinion
Final Takeaways

- Stance ≠ Sentiment
- Different features for detecting stance: text, network, and images
- Network features show significant performance over others
- Most work used supervised learning. Recent work explores semi-supervised, unsupervised, and transfer learning
- Many applications of stance: events analysis, understanding people’s interest, fake news detection … etc.
- Challenges need addressing: technical, ethical, and privacy
- Future: new less-supervised methods, datasets, applications.
Two References:

- Two references sum it all:
